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Brazil 
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Abstract. Quantum effects on the static critical behaviour of an isotropic n-vector model 
undergoing a displacement-type phase transition are studied at T, and to O(l/n). For 
T, # 0 there is no quantum effect on q, and for T, = 0 one gets q = 0 for d > 3, and for 
2 c d c 3 q is due to quantum fluctuations, implying that it assumes a different value than 
in the classical case. The dynamical behaviour of the system violates the dynamic scaling 
hypothesis. 

1. Introduction 

In this paper we are essentially interested in static and dynamic critical phenomena in 
an anharmonic lattice model simulating a displacive-type phase transition (PT). (A 
brief account of this work has been published elsewhere (Holz and Medeiros 1975).) 
This model is representative for a structural PT which is mediated by soft phonons 
(Anderson 1960, Cochran 1960). It has been shown by Cowley and Bruce (1973) and 
Jouvet and Holz (1974) that the classical critical behaviour of a structural PT mediated 
by a three-component phonon field can be studied by means of a renormalization group 
(RG) approach to a Heisenberg-type Hamiltonian. Quantum effects and dynamical 
properties have not been considered by these authors. 

Quantum effects on displacive-type PT were first studied by Barrett (1952) and later 
by Gillis (1969) in the self-consistent phonon formalism. Both authors obtain deviations 
from the CurieWeiss law for the dielectric constant at low temperatures. Rechester 
(1971) was the first to study low-temperature PT of displacive type within the framework 
of a self-consistent field theory and in the ‘parquet’ approximation. In particular he 
pointed out that as the transition temperature T, approaches 0 K quantum fluctuations 
get more and more important. Khmel’nitskii and Shneerson (1971, 1973) extended the 
work of Rechester by taking anisotropy of the anharmonic interaction and also scattering 
of critical phonons by impurities into account. These authors, however, did not study 
the q and o dependence of the soft-phonon propagators at T, , ie, the static and dynamic 
scaling properties of the system which are the objectives of the present work. 

Let us briefly point out that the potential experimental background to the present 
topic is the second-order displacive PT occurring in solid solutions of GeTe and SnTe 

t Work supported in part by Conselho Nacional de Pesquisas and Banco’ Nacional do Desenvolvimento 
EconBmico, Brazil. 
$ Now at Institut fur Theoretische Physik, Freie Universitiit Berlin, 1 Berlin 33, Arnimallee 3, Germany. 
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with T, ranging from about 700 K to nearly 0 K respectively (Goldak et a1 1966, Bierly 
et a1 1963), and also KTaO, (Shirane et a1 1967) where a PT occurs at about 10 K. 

The Hamiltonian we use can be written in the form 

4 

where the normal coordinates Qa&)(Q = aQ/at) obey the simple commutation relations 

(2) 

Here the Greek letter sums go over the n components of the field, go is the isotropic bare 
four-phonon vertex and 

tQa.q(t), Qa,.q,(t)l = ( h / i ) 6 d q , - q s  . 

ut2 = q2 + mi, 
the bare energy of the phonons squared. For further details see eg Kwok (1967). The 
model described is equivalent to an isotropic n-vector model to which we apply the l/n 
expansion techniques (see, eg, Ma 1973). Let us point out that Droz (1974) has also 
studied the problem defined by (1) and (2) in the T-dependent formalism but has not 
computed dynamical properties. The analysis of Droz is essentially restricted to the 
case N -+ m. The paper of Sasvari and Szepfalusy (1974) on structural PT will be 
discussed in 8 5 .  

Dynamical critical properties were studied first using diagram techniques in order 
to verify microscopically the dynamic scaling hypothesis (Ferrell et a1 1967, Halperin 
and Hohenberg 1969) by Halperin et a1 (1972) for the time-dependent Ginzburg-Landau 
(TDGL) model, ie, a classical model. Recently, however, there have appeared a fair 
number of papers which treat time-dependent critical phenomena in the 7'-dependent 
formalism in particular in connection with Bose-Einstein condensation phenomena 
(Kondor and Szepfalusy 1974, Abe and Hikami 1974, Suzuki and Igarashi 1974). In 
these studies the dynamic scaling hypothesis is assumed to hold as a starting point for 
the ljn expansion. It is found that there is no quantum effect on q to order l/n. 

The present analysis differs in an essential point from the above-mentioned work in 
that the unperturbed phonon propagator 

(3) D 0 (q,o,) = ( - w i + q 2 + m g ) - 1  

Go(q, w,) = (w, - q2 - m i ) -  
has a different frequency dependence from the Bose case, where 

(4) 
holds with U, = 2xin/hp ( p  = l/k,T). The difference between (3) and (4) obviously 
requires a new computation of all relevant graphs. 

Let us finally mention some shortcomings of the present model. First the anisotropy 
of the problem, which is always present, is not taken into account. According to Wallace 
(1973) and Ketley and Wallace (1973) and Aharony (1973a, b) this may change the 
second-order PT into a first-order PT or imply a different critical behaviour. For the low- 
temperature PT the anisotropy has been taken into account by Khmel'nitskii and 
Shneerson (1973) where a first-order PT is obtained. In a recent study of the general 
n-vector model by Brezin et a1 (1974) it is shown that to lowest order in c and for n < 4 
the O(n) symmetry is dynamically generated at the critical point. In view of this result 
therefore, it does not seem too serious a drawback to neglect the anisotropy. The 
second more serious point is that (1) does not couple to the acoustic phonon system. 
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Larkin and Pikin (1969) first noted that this will produce a PT of the first kind. Because 
in many systems the first-order nature of the PT does not show up within experimental 
accuracy as far as static properties are concerned, the effect may be neglected The 
acoustic phonon interaction is certainly of importance for the dynamics of the system 
and we will come back to this point in the discussion. 

The plan of the paper is as follows. In $ 2 we develop the basic formalism of the 
problem and calculate the elementary phonon bubble for T, # 0 and T, = 0. In $ 3 we 
compute q for these two cases. In $ 4  the dynamical critical behaviour is studied for 
T, # 0 and in $ 5 the results are discussed. 

2. Basic formalism 

The partition function of the problem in the interaction representation can be written 
as follows: 

( - + q” + mb2)Q;(q’, o;)Q;( - q’, - 0;) 

-& c 
4 ’  ai.wz.a3 f s qi s qi qi  Q&(q;,o;)QMq;,w;)Qb(q;,o;) 

where we have got rid of all coefficient ballast by going over to dimensionless quantities 

With (5 )  all Feynman rules for graph calculation apply, considering h and hfi as unity. 
The symbol Jq ( 2 7 ~ ) - ~ J  ddq will be used throughout. The cut-off A is of the order of 
the inverse interatomic distance. 

In order to calculate the static and dynamic q and o dependence of the propagator 
at T,  up to O(l /n)  it is sufficient to take chain diagrams into account and also to assume 
gb - l /n.  Imposing the following form on the dressed propagator (for the sake of 
simplicity all primes are dropped again) 

(7) D - yq, 0”, m2) = -O,” + q 2 +  m2 - q q ,  On, m2), 

q o ,  0, m2) = 0, 

where only a mass counter term has been introduced and where we require 

(8) 
we obtain in the chain approximation 
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where 

represents the elementary bubble. The evaluation of (10) is done by means of the 
Feynman parameter and contour methods where one obtains 

sin(3nd)Ad- so1 N0(uo,  - (A2 + B2)'/2) - No(uo ,  + (A2 + B2)lI2) 
(A2 + B2)1/2 du +f(d) 42-d) 

(11) 

with the abbreviations 

B2 = m2 + (1 - a)a(q2 - 0:) 

and No(x) is the Bose-Einstein function. 
Expression (1 1) is already in a form which allows us to make the analytical continu- 

ation o, + o+iO+. Next we study (11)  for the two cases T,  # 0 and T,  = 0, and for 
m2 = 0, ie, at q. 

2.1. Classical fluctuation regime T,  # 0 

The leading contribution to (1 1) will be that due to the first term and because the most 
singular behaviour results from a + 0 and x + 0 the Bose-Einstein functions can be 
expanded in a Taylor series. The integration over x is easily performed and yields for 
the leading term 

f ( d )  sin $nd 4Ad du 
I (q ,  U,, 0) Iv - (d-2)n TIo [$(q2-wi)-acr 1 2  q 2 2  3 

x F(2, d/2 ; d/2 + 1 ; - A2/[*(q2 - U;)- f l  1 2 2  4 I), 
which can be transformed into 

f(d)sin&d 8A2 dzF(2,td; 1+d/2; -z) 2 < d .e 4 (14) 
(d-2)nd -s q2 4A2/q2(2x -  1) [ ( -4A2/q'~)+~2] ' i2  I(q, w,, 0) - - 

where x = (q2 - o;)/q2. From the property of the hypergeometric function F(a, ; y ; x) 
to have a cut along the real axis extending from x = I to infinity it follows that Z(q,o,O) 
has a cut which extends from o2 = q2/2 to 2A2 +h2. Because the bubble involves two- 
phonon processes it is clear that in order to transfer momentum q two phonons with 
momentum 412 have to be created in order to obtain the minimum 02( = h2 +h2). 
Because of the momentum cut-off the maximum w2 is maxo' = 2A2. That the cut 
extends to 2A2 +k2 is due to translating the origin of the q' integration of the bubble. 
This is clearly an approximation which is not too important. Because (14) is not easy to 
handle an approximate form of (13) will be used in the following. A substantial sim- 
plification arises once one observes that the a2q2/4 term in the denominators of the 
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arguments in (13) complicates the situation. Because the main contribution comes from 
a - 0, we miss out this term in favour of the term proportional to a and obtain, using the 
integral representation of the F(a, p ;  y ; x) function (Erdelyi 1953) and interchanging 
integrations, 

- 2J(d) sin b d  
O) - (id - 1)2x(q2 

Ad-'F(1,;d- 1;;d; -2A2/(q2-w,2)). 

Let us point out that the ratio 

assumes its maximum value for d = 3, r = 71/48 and is 1 for d = 2 and 4. Although the 
cut of (15) starts now at wz = q2 it can be considered as a good approximation because 
the main contribution to the self-energy results from the opposite end of the cut. Due to 
the fact that the static limits of (14) and (15) almost coincide we think it is justified to 
study the problem using the approximation (15). 

2.2. Quantumjuctuation regime T,  = 0 

In the T,  = 0 limit one uses instead of the propagator (3) the propagator 

Do(q, w) = ( -w2 +q2 +m$-i6)- (17) 
and does not perform the normalization (6). 

Here the infinitesimal id implies that for w > 0 the pole is below the real axis whereas 
for w < 0 the pole is above the real axis. The propagator is thus the same as the Feynman 
propagator of the scalar meson theory described by a Klein-Gordon equation. If in 
addition one substitutes 

all formulae of the T-dependent formalism can be applied. Clearly (18) gives the Wick- 
rotated contour of the contour for which (17) is specified. The bubble can now be 
calculated in an analogous way to the earlier calculation and one obtains 

3. Evaluation of q 

In order to evaluate q one brings (9) into the form 

1 n+2 1 
3 n + 8 go ? Iq., 1 +go& + 8)Z(q", U! ,  0) 
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Setting w, = 0 one has to find the q2 In q term of this expression. This will be discussed 
separately for T,  # 0 and T,  = 0. 

3.1. Classicalfluctuation regime T,  # 0 

In order to show that there is no quantum effect on r]  for T,  # 0 we follow the demon- 
stration given by Abe (1974) for the boson case. For w1 = 0, the second term of (20) 
gives the classical value of r]  because Z(q, 0,O) coincides with the classical bubble. For 
w1 # 0 one uses (9) and the fact that the bubble is a positive function along the imaginary 
axis. This follows from (10) and is the case for (14) and (15). Proceeding in analogous 
steps to those used by Abe, one concludes that there is no quantum effect on r]  to O(l/n). 

3.2. Quantumjuctuation regime T, = 0 

From (20) one obtains with (18) and with the substitutions (6 )  in the inverse sense 

l n + 2  1 i m  1 1 
q q ,  0 , O )  = --goh- 3 n + 8  2n1J- imdzJq,r  ( (q+q”)2 - (w-z )  

1 n + 2  1 
3 n + 8  2ni - i m  1 + $g&n + 8)Z(q”, z ,  0) 

-- -g,h: fm dz 

1 

from which the retarded self-energy is obtained by means of the analytical continuation 
(o + o+iO+).  The first term of (21) is proportional to q2.  By means of dimensional 
arguments one finds that for d < 3 there is a term qd-’ .  However, because the integral 
is convergent for A + cc and d < 3 the origin of the q” integration can be shifted and one 
finds that the coefficient of qd- is zero. Accordingly the first term of (21) can be ignored. 

It follows from (19) and the properties of the hypergeometric function that Z(q, w,, 0) 
gets large only for d < 3. Accordingly the second term of (21) does not contribute a 
q2 In q term for d > 3 and therefore r]  (d > 3) = 0. For d < 3 the leading contribution 
to (21) is obtained as usual by expanding the denominator of (21) in a Taylor series to 
yield 

The small x integration contributes a q2 term and is, therefore, of no interest and for 
x >> 1 the denominator of the first term in the brackets of (22) can be expanded and 
eventually one obtains 

2 < d < 3 ,  

(23) 

n + 2 (d - 2)2(d - 1)2d-sn”2 T(d + 1/2) 
r]  =-- 

(n+8)2 t a n h d s i n h d  r ( l + d )  

v q  = 0 d > 3 ,  
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where the index q is a reminder that we are dealing with a quantum effect. It follows from 
(23) that qq 2 0. For d = 3 one gets the extrapolated value qq = 0. Accordingly q is 
continuous at d = 3. 

The results of this section can be summarized as follows. For ’& # 0 the static critical 
behaviour is due to classical critical fluctuations leading to a value of q which is in- 
dependent of the magnitude of ’&. At T, = 0 quantum fluctuations produce a value of 
q different from the classical value. This result can be understood as follows. For small 
T,  the domain in q space Aq < k,T, showing classical critical behaviour shrinks to zero 
and the domain hq > k,T, of quantum fluctuations with D - ’ ( q )  - q 2 - “ q  approaches 
zero. Accordingly at ’& # 0 there is a crossover from q to qq with increasing momentum 
but with q << A. 

4. Dynamical critical behaviour for T, # 0 

The self-energy of the retarded propagator will be calculated by evaluating first 
Im X(q, w + io+, 0) and then by use of the dispersion relations which are obeyed by 
X, Re X ( q ,  U, 0) will be calculated. 

The first term of (20) does not have an w dependence and can therefore be ignored 
in the following. The 1 summation in (20) will be substituted by an integration along the 
contour C’ which encloses the cuts and poles of (20) in the w plane. One obtains 

Because the methods of evaluating (24) are well known they will not be dwelt on further. 
Only one point has to be established : that the first term of (24) can be approximated 
as in the static case 

(25) 
for zz < 2A2 + q”’. This approximation is clearly justified for z2 - q”’ as follows from 
(15) for 2 < d < 4 and it can also be assumed that it is the region z2 - qfr2 which will 
give the main contribution to (24). 

The evaluation of the imaginary part is now straightforward. One obtains, after 
some calculation, for the leading part of the imaginary part of the self-energy : 

ImX(q,w+iO+,O) 

[ 1 +&go(n + 8)Z(q”, Z, O)] - ’ - [&go(n + 8)Z(q”, Z, O)] - ’, 

- + i sgn o coeff/q IoA dq” qrrd - ( som d z [ ( ~ + o ) ~  --q’rz]z-d/~l - f - Z ( ~ ) ~ / 2 - j  

+ Iom dz [ (z - 0)’ - q”2]z - d / Z (  1 - f - Z(z))d/2 -%J((z - 0)’ - q”2) 

x e ( 2 ~ ~ + ~ ~ ~ ~  - ( z - w ) ~ ) ~ ( ~ ~ ( z ) -  i)(i -2tqw-z)) 

x [NO( - z + 0) -NO( - z ) ]  , 1 
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0 x < o ,  I 1 x > o ,  
6(x) = 

f ( x )  = 2qq"/(q"2 + q 2  - 22)  

and all 0 ' s  inside brackets are understood as 1wJ. The asymmetrical form of (26) is due 
to the latter convention. The leading contribution to (26) can now be obtained by 
expanding the Bose-Einstein function, normalizing all variables with q and convincing 
oneself that the leading contribution to (26) is obtained from the large q"/q integration 
interval. Eventually one obtains for w << A and q << A the two limiting cases 

where x = lwl/q. In order to calculate the real part of the self-energy for q = 0 it is 
considerably more simple to start from (24) and set q = 0. The real part is obtained via 
the dispersion relation with a subtraction at w = 0. Expanding the Bose-Einstein 
function as usual one obtains after a number of intermediate steps 

n+2 sin'hd Re E(0, w, 0) - 2 d / 2 7  7 w 2  
(n+8) K 

(x + 2q2 - w2) 

(x - 0 2  - 2wq)(x - w2 + 2wq)' 
X 

From (28) it is a simple matter to extract the In w term and one obtains 
n+2 s i n h d  

Re X(0, w, 0) - 2d/2 - - w2 In A/w. 
(n + 8)2 K 

One anticipates that the real part depending simultaneously on CO and q is less important 
being probably of the form lwlq In 1wIq. 

The dressed retarded propagator to O(l/n) is now obtained as follows: 

where 

and the two limiting values of Ax) can be obtained from (27). Because all calculations 
have been done with (15) instead of with (11) ail exponents carry an index a. From (16) 
follows 

?a = rV (32) 

which is a good approximation as discussed below (16). 

requires the propagator to have the form 
It follows from (31) that the dynamic scaling hypothesis (Ferrell et al 1967) which 
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G - '(g, 0 , O )  - q2 - %w/w,), wq cc 4' (33) 
is violated due to the A/q factor of the dissipative term. This implies that the dissipative 
processes resolve the atomic length of the system. Let us point out that except for that 
factor the dynamic scaling hypothesis is satisfied to order l/n with 

(34) 
2 

4 d' 
z = l - - q a T  

5. Discussion 

We have studied the critical properties of an isotropic n-vector model for a displacement 
type PT at T,. It is found that at T, # 0 there is no quantum effect on the critical co- 
efficient q, a result which was also found by Abe and Hikami (1974) for Bose systems. 
However, as T, + 0 the domain in q space which shows classical critical behaviour 
hq e k,T, shrinks to zero and q assumes discontinuously new values as a function of d 
which are produced by quantum critical fluctuations. This means simply that the domain 
of quantum fluctuations hq > k,T, approaches zero. The result (23) is qualitatively 
easy to understand. The quantum critical fluctuations correspond always to a problem 
in d + 1 dimensions. Accordingly for d > 3 mean-field behaviour should be expected, 
ie, q = 0. For d d 3 the theory has infrared singularities and an anomalous dimension 
can be anticipated. However, the time dimension does not necessarily correspond to an 
additional dimension of the classical problem, ie, qq(d) # q(d+ 1) for 2 < d e 3. It is 
also important to notice that for T, # 0 no matter how small it is the singular behaviour 
of the Bose-Einstein function for small arguments produces classical critical behaviour. 

Let us point out that qn(d = 3) has not been calculated separately, but vanishes when 
extrapolated from (23). It appears, therefore, that the problem shows mean-field be- 
haviour for d = 3 and T, = 0. A second-order PT at T, = 0 has been studied by Rechester 
(1971) where it is also pointed out that this problem for d = 3 is formally equivalent as 
far as static properties are concerned to the classical treatment of a ferroelectric PT 
with long-range dipole interaction studied by Larkin and Khmel'nitskii (1969). The 
propagator at T,, however, is not computed by these authors. Let us point out that it 
would be an interesting problem to evaluate the critical coefficient y in a l/n expansion 
for T, = 0. 

With respect to the dynamical critical behaviour at T,  # 0 we have found that the 
dynamic scaling hypothesis is not observed by the system but that the atomic length 
enters the dissipative part of the propagator. Let us mention that Sasvari and Sdpfalusy 
(1974) have treated structural PT using the same model but using a variable potential 
range 6. The dynamical critical exponent z is calculated in the limit n + CO where 
dynamical scaling is obtained. In particular they obtain z = 1 for 6 = 2 which agrees 
with our result. The present result may be related to the difficulties of the RG approach 
to this problem mentioned in the literature (Halperin et a1 1972,1974). As a consequence 
of energy conservation in this problem the renormalized four-phonon vertex will not be 
regular in frequency for small momentum transfer. For q = 0 one obtains for the 
bubble which determines also the renormalized vertex 

Z(0, o + io', 0) - (2A2/02)2 -d 'Z exp(i sgn ozd/2). (35) 
In the Bose problem where dynamic scaling is observed (Kondor and Szepfalusy 1974) 
the quantity (35) vanishes. It has been mentioned by Halperin et a1 (1974) that once the 
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long-wavelength modes get overdamped, the propagator of the critical phonons goes 
over into 

which allows standard RG methods to be applied. Because it follows from (30) that the 
excitation spectrum of the phonons may approximately be represented by 

D-'(q,o+iO+,O) q2-iio/r, (36) 

oq - -iq2-d/2A-1+d/2 (37) 
(36)  is perhaps a good approximation especially when damping is taken into account. 
However, from a principal point of view it does not solve the problem. Further research 
on this problem is presently in progress. Dynamical properties at T,  = 0 have not been 
considered so far. 

Because the l /n  approximation gives rather poor results and should be extended 
to l/n2 (Abe 1973) comparison with experiment is not easily possible. On the other hand 
there exist no data on q for low-temperature displacive PT. With respect to the dynamic 
critical behaviour it is known that there occur rather strong acoustic anomalies (Fleury 
1971). It is therefore doubtful if the present idealized model can be tested experimentally. 
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